skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "CAFFEE, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 6, 2026
  2. Abstract Direct measurements of erosional response to past climate change are scarce, but mid‐latitude landscapes can record how shifts between cold and warm periods altered erosion outside glacial margins. To study hillslope responses to periglaciation, we measured bulk geochemistry and cosmogenic10Be and26Al concentrations in colluvium and weathered bedrock in an 18 m regolith core from Bear Meadows, Pennsylvania, ∼100 km south of maximum glacial extent. Using core lithology, cosmogenic nuclide concentrations, and regional10Be‐derived erosion rates, we show the onset of 100‐Kyr glacial cycles at the Mid‐Pleistocene Transition (1.2–0.7 Ma) instigated multiple periglacial episodes in central Appalachia, increasing erosion rates compared to the relatively warmer Neogene. Our results show the higher efficiency of periglacial versus temperate erosion processes and highlight a pervasive Pleistocene periglacial erosion signal preserved in the10Be inventory of surface sediments in central Appalachia, where erosion rates are slow enough to integrate previous cold‐climate processes. 
    more » « less
  3. Abstract Rates of northern Alaska Range thrust system deformation are poorly constrained. Shortening at the system's west end is focused on the Kantishna Hills anticline. Where the McKinley River cuts across the anticline, the landscape records both Late Pleistocene deformation and climatic change. New optically stimulated luminescence and cosmogenic10Be depth profile dates of three McKinley River terrace levels (~22, ~18, and ~14–9 ka) match independently determined ages of local glacial maxima, consistent with climate‐driven terrace formation. Terrace ages quantify rates of differential bedrock incision, uplift, and shortening based on fault depth inferred from microseismicity. Differential rock uplift and incision (≤1.4 m/kyr) drive significant channel width narrowing in response to ongoing folding at a shortening rate of ~1.2 m/kyr. Our results constrain northern Alaska Range thrust system deformation rates, and elucidate superimposed landscape responses to Late Pleistocene climate change and active folding with broad geomorphic implications. 
    more » « less